Gender segregation in education, training and the labour market:
Emerging findings from the Beijing Platform for Action report

dr. Lina Salanauskaite,
European Institute for Gender Equality (EIGE)

STEM Gender Equality Congress
European Parliament, March 8-9
QUICK BACKGROUND
• Engineering, manufacturing and construction with 20% of all graduates is the largest study field of STEM disciplines.
Main STEM occupations

- Science and engineering (associate) professionals refer to the largest STEM occupation type - in 23 EU countries, from 22% to 45% of all STEM employees.

- In RO and HU – metal, machinery and related trades workers is the largest occupation; in Bulgaria – stationary plant and machine workers; in Cyprus – building and related workers.
Rising demand, major shortages

• Demand for STEM professionals and associate professionals is expected to grow by around 8% by 2025, much higher than the average 3% growth forecast for all occupations (Cedefop)

• Major skills shortages of STEM and ICT professionals are already observed across all EU countries and expected to exacerbate with future demographic developments (i.e. large retiring foreseen)

• In spite of a series of measures, women participation in STEM studies, in particular in engineering, remains low in most Member States

• An insufficient supply of STEM skills and a low participation rate of women in STEM studies are perceived as barriers, which could impede a job rich recovery and growth of economy
EIGE’s report

MONITORING BEIJING PLATFORM FOR ACTION (BPFA)
Beijing Platform for Action

• To support better informed policy-making at EU and Member State levels, EIGE provides support to the Presidencies of the Council of the EU.

• EIGE’s reports assess progress in gender equality in the critical areas of concern of the BPfA chosen by the Presidencies.

• Gender segregation in education, training and the labour market – the topic chosen by the forthcoming Estonian Presidency of the Council.
BPfA areas of concern

<table>
<thead>
<tr>
<th>B. Education and Training of Women</th>
<th>Current BPfA Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Proportion of female graduates and male graduates of all graduates in mathematics, the sciences and technical disciplines (tertiary education);</td>
<td></td>
</tr>
<tr>
<td>• Proportion of female/male ISCED 5a-graduates of all ISCED 5a-graduates and proportion of female/male PhD graduates of all PhD graduates by broad field of study and total</td>
<td></td>
</tr>
</tbody>
</table>

| F. Women and the economy | Proportion of women and men among tertiary graduates of all graduates (ISCED levels 5 and 6) in natural sciences and technologies at the EU and Member State level |

| K. Women and the environment | Gender segregation: gender pay gap |

| L. The girl child | • Proportion of girl students in tertiary education in the field of science, mathematics and computing and in the field of teacher training and education science |
| | • 15-year-old girls and boys: performance in mathematics & science |
Rationale

• Gender segregation in education and training → labour market stratification → results in:

 → supporting gender stereotypes; narrowing life-choices and employment options; gender pay gap, etc.

 → A causal link.

• Addressing: participation of women in STEM; participation of men in education, health and welfare (EWH).

• Policy context: a need of active intervention guided by evidence.
EMERGING FINDINGS: STEM
Achievements: science and mathematics

- Gender difference in 15 year olds’ mean achievement in science and mathematics: 2015

Source: OECD PISA [http://www.oecd.org/pisa/data/]
Women’s share in STEM

2013-2015

Source: Eurostat, UOE data collection on education: educ_uoe_grad02
Changes over time

• Progress stalled or eroding: 2004 to 2014
Segregation by education level

- Gender segregation in STEM is much worse within vocational education than within tertiary education level (2013-2015);
- About 55% of all students are enrolled in vocational education programmes.
Graduates working in STEM field

- No smooth transition to the labour market, especially for women with vocational education level
<table>
<thead>
<tr>
<th>Occupation</th>
<th>Tertiary</th>
<th></th>
<th>Vocational</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching professionals</td>
<td>21%</td>
<td>12%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business and administration professionals</td>
<td>11%</td>
<td>11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business and administration associate professionals</td>
<td>10%</td>
<td>10%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Production and specialized services managers</td>
<td>5%</td>
<td>13%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales workers</td>
<td>7%</td>
<td>4%</td>
<td>20%</td>
<td>7%</td>
</tr>
<tr>
<td>Food Processing, Woodworking, Garment and Other Craft and Related Trades Workers</td>
<td></td>
<td></td>
<td>11%</td>
<td>10%</td>
</tr>
<tr>
<td>Personal Services Workers</td>
<td></td>
<td></td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Drivers and Mobile Plant Operators</td>
<td>3%</td>
<td></td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Labourers in Mining, Construction, Manufacturing and Transport</td>
<td>4%</td>
<td></td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>
Share of women in STEM occupations

2013-2014

Essentially progress recorded since 2004 with 1 p.p. at the EU level.
Share of women employed in ICT, 2008-2015
SELECTED INFLUENCES
Barriers to the participation of women in STEM

- Stereotypes, social norms and cultural practices
- Negative image of STEM
- Welfare policies
- STEM fields not considered as family-friendly
- Family background and the absence of women role models
- Male dominated culture
- Biased recruitment, appraisal and promotion procedures
- Limited access to networks, information, funding or institutional support, biased research evaluation procedures, low recognition in the field
Design of education systems matters

Age of pupils at the first placement into different educational tracks

Share of women graduating in STEM, %
Structure and size of labour markets

\[y = -0.4081x + 0.186 \]

\[R^2 = 0.1014 \]

\[y = -0.8069x + 0.3491 \]

\[R^2 = 0.1256 \]
Effect of narrowing the gender gap in STEM on GDP per capita

- Improvement in GDP per capita by 0.7 to 0.9%
- Improvement in GDP per capita by 2.2 to 3.0%
- Improvement in GDP by €130 to €180 billion
- Improvement in GDP by €610 to €820 billion
Effect of narrowing the gender gap in STEM on employment

1.2 million jobs
Conclusions

Gender segregation in education and the labour market is associated with creating and perpetuating gender inequalities in and beyond the labour market.

Segregation narrows employment choices and reinforces gender stereotypes.

The objective of gender equality policy should not necessarily be a homogenisation of the labour market by gender, although gendered roles shall be equally valued and remunerated.
Gender inequalities are dragging down women’s economic opportunities and affecting the entire EU economy

Leading to shortfall in terms of achieving inclusive and sustainable growth

To reach the goal of smart, sustainable and inclusive economic growth, the EU must improve existing and introduce further gender equality measures
Thank you!

Gedimino pr. 16, LT-01103 Vilnius, Lithuania

http://eige.europa.eu

http://twitter.com/eurogender

www.facebook.com/eige.europa.eu

www.youtube.com/eurogender

http://eurogender.eige.europa.eu